
 IJMIE Volume 2, Issue 4 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

333

April
2012

The Approaches of Materialize View

Maintenance Process in Data Warehousing

Mr. Sanjay S. Solanki*

Dr. Ajay Kumar**

__

Abstract:

Materialized view maintenance is a significant issue due to the growing use of warehouse

technology for information integration and data analysis. Materialized views are used to speed up

query processing on large amounts of data. In large databases particularly in distributed database,

query response time plays an important role as timely access to information and it is the basic

requirement of successful business application. These views need to be maintained in response to

updates in the source data.

 Typically, a view is maintained immediately, as a part of the transaction that updates the

base tables called as eager view maintenance. Immediate view maintenance imposes a significant

overhead on update transaction that cannot be tolerated in many applications. A materialized

view can be maintained lazily as maintenance is postponed until the system has free cycle or

after a specific time period called a deferred view maintenance. Experiments using a prototype

implementation in Oracle 9i show much faster response times for updates and also significant

reduction in maintenance cost when combining updates.

Keywords: Data warehousing, View Maintenance, Auxiliary relation, Query cost, View

manager.

* Asst. Prof., JSPM’s Jayawant Institute of Management Studies, Tathawade, Pune-33.

** Director, JSPM’s Jayawant Institute of Computer Applications,Tathawade, Pune-33.

 IJMIE Volume 2, Issue 4 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

334

April
2012

1. Introduction:

 Materialized views are important in data warehousing for fast retrieval of derived data

regardless of the access paths and complexity of view definitions. When the underlying data

sources are updated by insertion, deletion, or modification of tuples, a materialized view must

also be updated to ensure the correctness of answers to queries against it. Updating the

materialized view by full recomputation is often expensive and a more efficient technique can be

to update the view incrementally. By this, we mean that the new view is computed from the

existing view and the changes to the base relations.

 Most database systems achieve this by eager view maintenance where all affected views

are maintained as part of the update statement or the update transaction. Under eager

maintenance, the view maintenance cost is born entirely by updates while the beneficiaries of the

view get a free ride. View maintenance overhead can be quite high when multiple views require

maintenance, resulting in poor response times for updates. Forcing updates to pay for

maintenance seems rather unfair and may also be inefficient if there are many small updates. To

address this situation, some database also support batch maintenance or deferred materialized

view maintenance. In deferred view maintenance, maintenance is delayed and takes place only

when explicitly triggered by a user. This is also called lazy view maintenance. This approach

has the serious drawback that a query may see an out-of –date view and produce an incorrect

result. Allowing the query optimizer to automatically use such views compromises corrections.

The use of materialized views is no longer automatic and transparent to users. Query issuers have

to know what views are used by a query, how they are maintained and whether they are or need

to be, up to date at execution time.

 We wanted a solution that both relieves the burden of view maintenance from updates

and retains the property that queries always see up-to-date views. Under lazy view maintenance,

updates do not maintain views but just store away enough information so that affected views can

be maintained later. Actual view maintenance is done by low priority jobs running when the

system has free cycles available. If the system has enough free cycles and a view is maintained

before it is needed by queries, neither updates nor queries pay for view maintenance. If a view is

not up-to-date when needed by a query, it is transparently brought up to date before the query is

 IJMIE Volume 2, Issue 4 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

335

April
2012

allowed to access it. In this case the first beneficiary of the view pays for all part of the views

maintenance by experiencing a delay. However, it only pays to maintenance of views that it uses

and not for maintenance of other views affected by an update. Lazy maintenance allows updates

to complete faster so locks are released sooner, which reduces the frequency of lock contention,

lock conflicts and transaction aborts. This is particularly important for updates that affect highly-

aggregated views because they tend to have higher rates of lock conflicts.

 Maintenance task can also be reduced by merging maintenance tasks, which allows them

to be processed more efficiently.

2. System Overview:

 An overview of our design is explained in this section and also describes individual

components in more detail. Figure 1 shows the overall system design for lazy materialization

view maintenance. The wrapper monitor pair finds the interested changes across the data sources

& sends it to integrator to integrate the changes into data warehouse.

Materialized

Views

Figure 1 System Overview

Integrator

Wrapper/

Monitor

Wrapper/

Monitor

Wrapper/

Monitor

Data Source1 Data Source2
Data Source n

View Manager

Auxiliary relations

 IJMIE Volume 2, Issue 4 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

336

April
2012

Figure 1 shows system design for lazy view maintenance. We first describe the individual

components and then explain the overall procedure.

Auxiliary relations: Execution of an insert, delete or update statement against a data source

produces intermediate result. Obviously there are overheads incurred by maintenance of these

auxiliary relations, but their use can often significantly reduce the cost of computing the updates

to the materialized view. By maintaining these relations, a view can be self-maintained

incrementally without recomputing intermediate results from scratch and the exact change to

every intermediate step can be derived from them.

Maintenance Manager: This component keeps track of active view maintenance tasks and what

delta changes are needed. It is also responsible for constructing view maintenance jobs and

scheduling them.

To be able to quickly find all maintenance tasks for a given view, the manager maintains a hash

table containing an entry for each materialized view with active maintenance tasks. Each entry

has a linked list containing the maintenance tasks of the view. The list is sorted in an increasing

order on count sequence number.

2.1 Update Transactions

 Consider an update statement modifying a base relation S that is referenced by a number of

materialized views. Eager maintenance updates all materialized views that reference S

immediately after the update statement. In the case of lazy maintenance, view maintenance is

skipped. Instead, enough information is saved so the affected views can be updated later. The

intermediate result is stored in the auxiliary relations and after specific period the materialized

views are refreshed.

 An update transaction may contain multiple update statements. The transaction internally

records which table is modified by which statement and which views are affected. Each update

statement reports its own information at the end of its execution.

 When the update transaction commits, maintenance tasks are constructed based on the

information reported during execution. One maintenance task is generated per affected

 IJMIE Volume 2, Issue 4 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

337

April
2012

materialized view. The tasks are then passed on to the maintenance manager and also written to

the persistent task table. If the update transaction aborts, no information is saved and no

maintenance tasks are constructed.

2.2 Lazy Maintenance

 The view manager as shown in figure1 wakes up after specific time. If there are no pending

maintenance tasks or the system is currently busy, it goes back to sleep. Otherwise, it decides

what views to maintain and for each view, construct a low-priority back ground maintenance job

and schedule it. Maintenance jobs for the same view are always executed in the commit order of

the originating transaction.

 The maintenance manager may combine multiple maintenance tasks for the same view into a

larger job that can be executed more efficiently. During maintenance delta changes from

auxiliary relations are used. When a maintenance job completes, it reports back to the

maintenance manager. The manager then removes the completed tasks from its task list and

releases any tuples from auxiliary relations.

2.3 Effect on Response Time

Lazy view maintenance is completely transparent to applications. Applications exploit

materialized views in the same way as before and always see a state that is transactionally

consistent with base tables. The only difference is in response time of updates and queries, which

is the topic of this section. Suppose we have three updates followed by a query. All three updates

affect a materialized view that is used by the query.

 Under eager maintenance, each update has to wait until maintenance is done. If the

affected views are expensive to maintain, update response times may be very slow. When the

query arrives, the updates have completed and the view content is up to date so the query

completes quickly.

 Under lazy maintenance, the response time of the updates is much improved. Suppose the

system gets a chance to maintain the affected views after the three updates. By combining the

three updates, the total time spent on maintaining the views is reduced. If the query arrives after

 IJMIE Volume 2, Issue 4 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

338

April
2012

lazy maintenance is done, its response time is the same as the eager maintenance. If the query

arrives in the middle of lazy maintenance of a view that it needs, it is forced to wait until

maintenance of that view is finished. Finally, if the query arrives immediately after updates and

before the system has begun maintenance of the view, the query issues a on-demand

maintenance request at the beginning and waits until it is finished. The total system response

time for all the updates and the query is still improved over eager maintenance.

 The total cost for materializing views can computed using the following strategy. The

cost contains query processing cost (for selection, aggregation and joining), view maintenance

(refresh view) cost. The cost is calculated in terms of block size B. The query processing cost in

terms of block access is equal to size of materialized view Vi.

 CB(Vi)=S(Vi)

The query cost involving the joining of n dimensional tables with view Vi is given by:

Cj(Vd1, Vd2,---, Vdn, Vi)= (S(Vd1) + S(Vd1) * (SVi)) + (S(Vd2) + S(Vd2)*S(Vi)) --- + (S(Vdn)

+S(Vdn)* S(Vi))

 To process users query qi, which requires not only selection and aggregation of the view, but

also the joining of view with other dimension tables, the query cost Cq(qi) is given by:

Cq(Vi)= CB(Vi)+ Cj(Vd1, Vd2,---, Vdn, Vi)=

S(Vi)+ (S(Vd1) + S(Vd1) * (SVi)) + (S(Vd2) + S(Vd2)*S(Vi)) --- + (S(Vdn) +S(Vdn)* S(Vi))

Thus the total Query cost Total(Cqr) for processing r user queries is given by

Total(Cqr)= fqi*Cq(qi))

The re-computation of each view requires selection and aggregation from its ancestor view Vai

and their joining with n dimension tables. Therefore the maintenance cost is given by

 IJMIE Volume 2, Issue 4 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

339

April
2012

Cm(Vi)= CB(Vai) + Cj((Vd1, Vd2,---, Vdn, Vai) = S(Vi)+ (S(Vd1) + S(Vd1) * (SVai)) + (S(Vd2) +

S(Vd2)*S(Vai)) --- + (S(Vdn) +S(Vdn)* S(Vai))

 If there are j views which are materialized, the total maintenance cost Total(Cm) for these

materialized views is given by:

Total(Cm)= fui*Cm(Vi))

 The total cost of query processing is the cost of query precessing & the cost of view

maintenance

Total Cost(Ctotal) = Cost of Query

 Processing + Cost of Maintenance

 View Maintenance Query

Figure 2 (a) Eager View Maintenance

 View Maintenance Query

Figure 2 (b) Lazy View Maintenance

3. When to use Lazy Maintenance:

 Each maintenance approach has its benefits and drawbacks and which approach is better

for a particular view depends on the application. Generally, the choice of maintenance strategy

for a materialized view depends on the following factors.

 The ratio of updates to queries and how soon queries follow after updates.

T1

T2

T3

Q1

T1 T2

T3

Q1

 IJMIE Volume 2, Issue 4 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

340

April
2012

 The size of updates (number of rows affected by each update), relative to the view

maintenance cost.

 Eager maintenance is suitable for materialized views whose base tables are seldom updated

and the updates are likely to be followed immediately by queries. It is also suitable for views

where the input delta changes tend to be large but maintenance cost is relatively low. On the

other hand, lazy maintenance is suitable for views with more frequent small updates and whose

maintenance costs are relatively high.

4. Scheduling Maintenance Tasks:

Background scheduling:

Lazy maintenance can be triggered when the system has free cycles. In this case, the

maintenance manager can freely choose which materialized view(s) to maintain. Scheduling of

view maintenance has multiple, somewhat conflicting goals. First, it is desirable to hide view

maintenance from queries as much as possible to improve query response time. Second,

maintenance should be performed as efficiently as possible. Third, it is important to minimize the

response consumed by pending maintenance tasks. Any scheduling policy represents a trade-off

among these goals.

 To hide view maintenance from queries, views could be assigned priorities based on how

soon they are expected to be referenced by queries. The sooner the view is expected to be used,

the sooner the view needs to be maintained. Future reference information can be estimated based

on historical usage of the views.

 If the view has multiple pending tasks, the manager must also decide whether and how

many to combine into a single maintenance job. Combining tasks improves efficiency but could

result in a long-running maintenance transaction. Other considerations may also be important

when designing a scheduling policy. For example, we may know that a view is used only at a

certain time of the day, for example, to produce reports. In that case, all that matters is that the

view is brought up to date before that time.

 IJMIE Volume 2, Issue 4 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

341

April
2012

 Maintenance jobs run as low-priority background jobs but one could further reduce their

impact on system resources. In case of a sudden burst in system workload, maintenance jobs can

be paused or even aborted to avoid slowing down the system. We can also perform maintenance

tasks in two phases. In first phase change computation will done and in second change will be

applied to the materialized views.

On-demand Scheduling:

 Lazy maintenance can also be triggered by a query. In this case, the views referenced by

the query are maintained immediately. The maintenance manager must still decide whether and

how to combine maintenance tasks. The maintenance jobs inherit the same priority as the query.

A more interesting question is when it is possible to avoid maintaining a view even though it is

referenced by a query. A view referenced by a query does not have to be brought up to date

immediately if the pending updates do not affect the part of the view accessed by the query. It

may be worthwhile to first check whether the pending maintenance tasks can cause a change in

the view that is visible to the query. If not, the view does not have to be maintained immediately

while still safely serving the query.

 There are several ways to check. For example, we can project the query predicate onto

each base table and scan the corresponding auxiliary tables with the projected predicate. If no

scans return any tuples, we can safely deduce that the view content accessed by the query cannot

be affected by the pending updates. This can be easily proven because it means that none of the

m terms in the maintenance expression can produce a result affecting rows accessed by the

query. However, this filtering operation can be expensive as maintaining the query.

 In either scheduling mode, the maintenance manager schedules one job at a time for one

view. This is achieved by monitoring the tasks status in the manager. There can be at most one

task with the status of in progress for each materialized view. So that each transaction will

preserve an ACID property.

 IJMIE Volume 2, Issue 4 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

342

April
2012

5. Experimental Results:

To verify the feasibility and effectiveness of our view maintenance strategies and our

corresponding materialized view optimization, we have implemented the proposed strategies in

Oracle 9i. We deploy the view manager and the corresponding materialized view on a

workstation with Pentium® 4 CPU 2.4 GHz processor, 1 GB of RAM and 160 GB disks,

running Windows XP. In the experimental setting, there are four base relations(data sources)

namely R1, R2, R3 and R4. The relation R1 contain 500000 records, R2 contains 250000

records, where in R3 there are 100 records and in R4 200 records. Total number of attributes are

24. A materialized join view is defined on all 24 attributes. Table 1 depicts

five different scenarios in which we update 100,200,300,400 & 500 records using a update

statement.

Elapsed time required for Eager &

Lazy maintenance approach

No. of Updates
Eager

(seconds)

Lazy

(seconds)

1X10^2 105.3 17.7

2X10^2 156.5 21.5

3X10^2 171.2 23.2

4X10^2 179.3 25.8

5X10^2 188.2 28.9

Table 1 Time comparison for Eager & Lazy maintenance.

Figure 3 depicts the total view maintenance cost measured in seconds(y- axis) under different

numbers of source data updates (x-axis).

 IJMIE Volume 2, Issue 4 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

343

April
2012

Figure 3 Elapsed time requirement of Eager & Lazy maintenance.

Figure 2 shows performance of lazy view maintenance over eager view maintenance. With lazy

maintenance, update response time is reduced to virtually nothing. The system returns

immediately after the records updated in the data warehouse. The eager method of view

maintenance is expensive because each update requires holding lock on view to reflect the

changes.

 In eager maintenance, a query can exploit a view for free since it has already been

maintained. However, update transaction are slowed down by view maintenance so they keep

locks on the affected views longer, which may force queries and other updates to wait.

 Under lazy maintenance, query response time depends on when the query arrives. Before

execution begins, the query first checks with the maintenance manager if the requested view is

up to date. If not, the query waits until all pending and in-progress maintenance of the view is

completed.

6. Conclusions:

 The materialized view is most beneficial for improving query performance as it stores

precomputed data. We present the solution to materialized view maintenance in a mixed data

update. Lazy maintenance can reduce update response time by orders of magnitude because

updates no longer have to wait for views to be maintained. Eager maintenance is suitable for

materialized views whose base tables are seldom updated and the updates are likely to be

0

20

40

60

80

100

120

140

160

180

200

1X10^2 2X10^2 3X10^2 4X10^2 5X10^2

Eager
(seco
nds)

Lazy
(seco
nds)

Elapsed

Time

(Second
s)

 IJMIE Volume 2, Issue 4 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

344

April
2012

followed immediately by queries. On the other hand, lazy maintenance is suitable for views with

more frequent small updates and whose maintenance costs are relatively high. Under lazy

maintenance the updates response time depends only on the cost of updating base relations and

storing delta changes into auxiliary relation and not on the number and complexity of views

affected. It allows updates to complete faster so locks are released sooner, which reduces the

frequency of lock contention, lock conflicts and transaction aborts. A view is already maintained

by each update transaction in eager maintenance so a query can exploit a view for free.

References:

 [BLT 86] J. A. Blakeley, P. Larson and F. Tompa,”Efficiently Updating Materialized

Views”, Proceeding of the ACM SIGMOD Conference, Washigton, 1986.

 [CJS 94] A. Courtney, W. Janseen, D. Severson, M. Spreitzer, and F. Wymore, “Inter-

language unification, release 1.5”, Technical report ISTL-CSA-94-01-01.

 [Cui 99] Y. Cui & J. Widom, “Storing Auxiliary Data for Efficient View Maintenance &

Lineage Tracing”, Technical Report, Stanford University,1999.

 [GL95] T. Griffin and L. Libkin, “ Incremental Maintenance of a View with Duplictes”, In

SIGMOD, pages 328-339, May 1995.

 [GM95] A. Gupta and I. S. Mumick, “Maintenance of materialized views: Problems,

technologies, and applications”, IEEE Data Engineering Bulletin, Special Issue on

Materialized Views and Data Warehousing, 18(2):3-18, June 1995.

 [Hammer 95] J. Hammer, H. Garcia-Molina, J. Widom, W. Labio & Zhuge, “The Stanford

Data Warehousing Project”, IEEE Data Engineering Bulletin, June1995.

 [Han87] E. N. Hanson, “A performance analysis of view materialization strategies”, In

SIGMOD pages 440-453, 1987.

 [Hull 96] R. Hull & G. Zhou, “A framework for supporting data integration using the

materialized & virtual approaches”, In SIGMOD Int’l Conference, Canada, June 4 -6,1996.

 [Hyun 97a] N. Hyun, “Efficient View Self-Maintenance”, Proceeding of ACM workshop on

Materialized views:Techniques & Applications”, Canada, June 7,1996.

 IJMIE Volume 2, Issue 4 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

345

April
2012

 [JMS 95] H. V. Jagdish, I. S. Mumick & A. Silberschatz, “View Maintenance issues in the

chronicle data model”, In 14
th

 Int’l conference PODS, 1995.

 [Jenn95] Jennifer Widom, “Research Problems in Data Warehousing”, Proc. of
4th

 Int’l

Conference on Information and Knowledge Management”, Stanford, Nov 1995.

 [LGM96] W. Laboi and H. Garcia-Molina, “Efficient snapshot differential algorithms in data

warehousing”, In VLDB, pages 63-74, September 1996.

 [LW95] D. Lomet and J. Widom,” Special Issue on Materialized Views and Data

Warehousing”, IEEE Data Engineering Bulletin 18(2), June 1995.

 [Quass 96] D. Quass, A. Gupta, I. S. Mumick, and J. Widom, “Making Views Self-

Maintenable for Data Warehousing”, Proceddings of the Conferecne on Parallel &

Distributed Information Systems, Miami Beach, Fl, December 1996.

 [Silberschatz97] A. Silberschatz, H. F. Korth & S. Sudarshan,”Database System

Concepts”,3
rd

 Edition, McGraw-Hill,1997.

 [TPC99] Transaction Processing Performance Council(TPC), “TPC Benchmark (Decision

Support)”, http:/www.tpc.org,1999.

 [Zhuge 95] Y. Zhuge, H. Garcia-Molina, J. Hammer & J. Widom, “Performance Analysis of

WHIPS Incremental Maintenancet”, Proceeding of the ACM SIGMOD Conference, San

Jose, California, June 1995.

 [Zhuge 95] Y. Zhuge, H. Garcia-Molina, J. Hammer & J. Widom, “View Maintenance in a

Data Warehousing Environment”, Proceeding of the ACM SIGMOD Conference, San Jose,

California, June 1995.

 [Zhuge 96] Y. Zhuge, H. Garcia-Molina, J. Hammer & J. Widom, “The Strobe algorithms

for Multi-Source Warehousing Consistency”, Proceeding of the Conference on Parallel &

Distributed Information Systems, Milami Beach, Fl., December 1996.

 [Zhuge 97a] Y. Zhuge, H. Garcia-Molina,“Multiple View Consistency for Data

Warehousing”,Intl’ Conference on Data Engineering, UK,April1997.

